Robust Transforming Combiners from iO to Functional Encryption

Prabhanjan Ananth
Aayush Jain
Amit Sahai
Since 2013...

- Two-Round (Adaptive) Multi-Party Computation
- Instantiating Random Oracles
- Non-Interactive Multi-party Key Exchange
- Impossibility Results
- Theoretical Results (such as PPAD Hardness)
- Constant-Round Concurrent Zero Knowledge
- Separation Results for Circular Security
- Succinct Randomized Encodings
- Watermarking
- Patching

Indistinguishability Obfuscation (iO)/Functional Encryption
What is iO?

\[
iO \quad (\quad C \quad) \quad \rightarrow \quad C^*\n\]
What is iO?

\[iO \rightarrow (C) \rightarrow C^* \]

Correctness: for all \(x \), \(C^*(x) = C(x) \)
What is iO?

\[C_0 \equiv C_1 \]
What is iO?

\[
iO \left(\begin{array}{c}
C_0
\end{array} \right) \equiv \left(\begin{array}{c}
C_1
\end{array} \right)
\]
What is iO?

\[
\text{iO} \left(\begin{array}{c} C_0 \\ \end{array} \right) \equiv \begin{array}{c} \text{Co} \\ \boxed{\text{Co}^*} \end{array} \\
\text{iO} \left(\begin{array}{c} C_1 \\ \end{array} \right) \equiv \begin{array}{c} \text{C}_1 \\ \boxed{\text{C}_1^*} \end{array}
\]
What is iO?

\[
\begin{align*}
iO \left(\begin{array}{c} C_0 \end{array} \right) & \equiv C_0^* \\
iO \left(\begin{array}{c} C_1 \end{array} \right) & \Rightarrow C_1^*
\end{align*}
\]

Security: \(\approx_c \)
Functional Encryption

[SW’05, GGHRSW13]
Functional Encryption

[SW’05, GGHRSW13]

Fine Grained Access to Private Data
Functional Encryption

[SW’05, GGHRSW13]

Fine Grained Access to Private Data
Functional Encryption

[SW’05, GGHRSW13]

Fine Grained Access to Private Data

MSK
Functional Encryption

[SW’05, GGHRSW13]

Fine Grained Access to Private Data
Functional Encryption

[SW’05, GGGHSW13]

MSK

Fine Grained Access to Private Data
Functional Encryption

[SW’05, GGHRSW13]

\[\text{Dec}(\mathcal{f}, x) = f(x) \]

Fine Grained Access to Private Data
Functional Encryption

[SW’05,GGHRSW13]

Dec(f, x) = $f(x)$

SK$_f$ should not allow adversary to compute anything other than $f(x)$!
Known Constructions?

[GGHRSW’13, BGKPS’14, Zim’15, GLSW’15, AB’15, GMMSSZ’16, LV’16, L’16, AS’17, LT’17....]
Are all candidates of iO broken?

NO!
Are all candidates of iO broken?

NO!

We have several unbroken iO candidates, including with proofs of security in various models.
Our Goal

Find a iO candidate that is secure even if *only* one of the candidates is secure.
Our Goal

Find a iO candidate that is secure even if only one of the candidates is secure.

Problem Statement:
Given any set of iO candidates, find a candidate that is secure even if only one of the candidates is secure.
Our Goal

Find a iO candidate that is secure even if only one of the candidates is secure.

Problem Statement:
Given any set of iO candidates, find a candidate that is secure even if only one of the candidates is secure.

iO combiner
Our Goal

Find a iO candidate that is secure even if only one of the candidates is secure.

Problem Statement:
Given any set of iO candidates, find a candidate that is secure even if only one of the candidates is secure.

Robust iO combiner:

In fact we only require the secure candidate to be correct
All other candidates can violate correctness

[AJNSY16, FHNS16]
Robust iO Combiners

Let $\mathbf{P} = (P_1, \ldots, P_n)$ be any n iO candidates
Robust iO Combiners

Let \(\mathbf{P} = (P_1, \ldots, P_n) \) be any \(n \) iO candidates

- \(\text{RCiO.Obf(} \mathbf{P}, C) \text{ outputs } C^* \).
Robust iO Combiners

Let $P = (P_1, \ldots, P_n)$ be any n iO candidates

- $RCiO.Obf(P, C)$ outputs C^*.
- $RCiO.Eval(P, C^*, x)$ outputs y.

Robust iO Combiners

Let $\mathbf{P} = (P_1, \ldots, P_n)$ be any n iO candidates

- $\text{RCiO.Obf}(\mathbf{P}, C)$ outputs C^*.
- $\text{RCiO.Eval}(\mathbf{P}, C^*, x)$ outputs y.

If there exists i in $[n]$ such that P_i is correct and secure:
Robust iO Combiners

Let $P = (P_1, \ldots, P_n)$ be any n iO candidates

- $\text{RCiO.Obf}(P, C)$ outputs C^*.
- $\text{RCiO.Eval}(P, C^*, x)$ outputs y.

If there exists i in $[n]$ such that P_i is correct and secure:

Correctness: $y = C(x)$
Robust iO Combiners

Let \(\mathbf{P} = (P_1, \ldots, P_n) \) be any \(n \) iO candidates

- \(\text{RCiO.Obf}(\mathbf{P} , C) \) outputs \(C^* \).
- \(\text{RCiO.Eval}(\mathbf{P} , C^* , x) \) outputs \(y \).

If there exists \(i \) in \([n] \) such that \(P_i \) is correct and secure:

Security: If \(C_0 \) is equivalent to \(C_1 \),

\[
\text{RCiO.Obf}(\mathbf{P} , C_0) \approx_c \text{RCiO.Obf}(\mathbf{P} , C_1)
\]
Implications

Robust iO combiners imply universal iO [AJNSY’16]
Implications

Robust iO combiners imply universal iO [AJNSY’16]

Universal iO:

A scheme \(P \) is a universal iO scheme if \(iO \) exists then \(P \) is a secure iO scheme
Previous Work
Previous Work

- **AJNSY16** gave candidate construction of a robust combiner from DDH/LWE.
- Required one candidate to be sub-exponentially secure.
- **FHNS16** considers the case of combining unconditionally.
Previous Work

• **AJNSY16** gave candidate construction of a robust combiner from DDH/LWE.
• Required one candidate to be sub-exponentially secure.
• **FHNS16** considers the case of combining unconditionally.

Questions?

• Can we achieve some applications of iO if the secure candidate is polynomially secure?
• Can we weaken the assumptions to rely on only one-way functions?
This Work

Theorem 1 (Combiner -> Robust Combiner):

Given:

- An iO Combiner **AND**
- One-way function f,

we construct a robust iO combiner
This Work

Theorem 1 (Combiner -> Robust Combiner):
Given:

• An iO Combiner AND
• One-way function \(f \),

we construct a robust iO combiner

Previously, as observed in AJNSY’16 and BV’15, this result required sub-exponential DDH/LWE and the underlying candidate to be sub-exponentially secure
This Work
This Work

Theorem 2: Given:

- N correct iO Candidates (with one secure)
- **AND**
- Any one-way function F,

we construct a compact FE scheme with complexity $\text{poly}(k,N)$ and polynomial security loss.
This Work

Theorem 2: Given:
- *N* correct iO Candidates (with one secure)

 AND

- Any one-way function *F*,

we construct a compact FE scheme with complexity \(\text{poly}(k,N)\) and polynomial security loss.

Corollary [AJ15,BV15]: There exists (sub-exponential) universal iO if sub-exponential one-way functions exist.
This Work

Theorem 2: Given:

- N correct iO Candidates (with one secure)
- **AND**
- Any one-way function F,

we construct a compact FE scheme with complexity $\text{poly}(k,N)$ and polynomial security loss.

Corollary [AJ15,BV15]: There exists (sub-exponential) universal iO if sub-exponential one-way functions exist.
Given N candidates of primitive $A=(A_1, \ldots, A_N)$, such that one A_i is secure and correct, construct secure primitive B with efficiency polynomial in N.

Transforming Combiners
Transforming Combiners

Given \(N \) candidates of primitive \(A = (A_1, ..., A_N) \), such that one \(A_i \) is secure and correct, construct secure primitive \(B \) with efficiency polynomial in \(N \).

We show:
There exists a transforming robust combiner from iO to Functional Encryption. This also yields any primitive implied by FE (such as NIKE. [GPSZ17])
Technical Overview
Combiner to Robust Combiner: Idea 1
Combiner to Robust Combiner: Idea 1

- For each obfuscation candidate P, construct modified candidate P' that “self-checks for correctness”:
Combiner to Robust Combiner: Idea 1

- For each obfuscation candidate P, construct modified candidate P' that “self-checks for correctness”:
Combiner to Robust Combiner: Idea 1

- For each obfuscation candidate P, construct modified candidate P' that “self-checks for correctness”:

$P'(C)$ works as follows:
1. Compute $P(C) = C^*$
Combiner to Robust Combiner: Idea 1

- For each obfuscation candidate \(P \), construct modified candidate \(P' \) that “self-checks for correctness”:

\[
P'(C) \text{ works as follows:}
1. \text{Compute } P(C)=C^*
2. \text{Sample } x_1, x_2, \ldots, x_L, \text{ where } L = k^2
\]
Combiner to Robust Combiner: Idea 1

- For each obfuscation candidate P, construct modified candidate P’ that “self-checks for correctness”:

\[\text{P'}(C) \text{ works as follows:} \]
1. Compute \(P(C) = C^* \)
2. Sample \(x_1, x_2, \ldots, x_L \), where \(L = k^2 \)
3. Check if \(C^*(x_i) = C(x_i) \) for all \(i \)
Combiner to Robust Combiner: Idea 1

- For each obfuscation candidate P, construct modified candidate P' that “self-checks for correctness”:

P'(C) works as follows:
1. Compute P(C)=C*
2. Sample x₁, x₂,...,xₘ, where L = k²
3. Check if C*(xᵢ)=C(xᵢ) for all i
4. If any check fails, output C, otherwise output C*
Combiner to Robust Combiner: Idea 1

- For each obfuscation candidate P, construct modified candidate P' that “self-checks for correctness”:

\[
\Pr_{\{x, \text{coins}(P)\}} [C^*(x) = C(x)] \geq 1 - 1/k
\]

$P'(C)$ works as follows:

1. Compute $P(C) = C^*$
2. Sample x_1, x_2, \ldots, x_L where $L = k^2$
3. Check if $C^*(x_i) = C(x_i)$ for all i
4. If any check fails, output C, otherwise output C^*
Combiner to Robust Combiner: Idea 1

- For each obfuscation candidate \(P \), construct modified candidate \(P' \) that “self-checks for correctness”:

\[
\Pr_{\{x, \text{coins}(P)\}} [C^*(x) = C(x)] \geq 1 - \frac{1}{k}
\]

Secure candidate is unchanged as it is correct.

\(P'(C) \) works as follows:
1. Compute \(P(C) = C^* \)
2. Sample \(x_1, x_2, \ldots, x_L \), where \(L = k^2 \)
3. Check if \(C^*(x_i) = C(x_i) \) for all \(i \)
4. If any check fails, output \(C \), otherwise output \(C^* \)
Removing dependency on x: Idea 2
Removing dependency on x: Idea 2
Removing dependency on x:
Idea 2
Removing dependency on x: Idea 2

- Consider a “special” circuit garbling scheme with an additional property.
Removing dependency on x: Idea 2

- Consider a “special” circuit garbling scheme with an additional property.

For any equivalent circuits C_0 and C_1

$$\text{Eval}([C_0], *) \equiv \text{Eval}([C_1], *)$$
Removing dependency on x: Idea 2

- Consider a “special” circuit garbling scheme with an additional property.

For any equivalent circuits C_0 and C_1

$$\text{Eval}([C_0],*) \cong \text{Eval}([C_1],*)$$

- Such garbled circuits can be constructed from one-way functions.
Combining Ideas
Combining Ideas

1. Use the modified obfuscator to obfuscate Eval([C], *)
2. Release the encoding key MSK to the evaluator.
Combining Ideas

1. Use the modified obfuscator to obfuscate $\text{Eval}([C],*)$
2. Release the encoding key MSK to the evaluator.

For any x,

$$\Pr_{\{\text{coins}(P)\}} [C^*(x) = C(x)] \geq 1 - \frac{2}{k}$$
Combining Ideas

1. Use the modified obfuscator to obfuscate Eval([C], *)
2. Release the encoding key MSK to the evaluator.

For any x,
\[\Pr_{\text{coins}(P)} [C^*(x) = C(x)] \geq 1 - \frac{2}{k} \]

Perform BPP Amplification to get almost correctness
Theorem 2: Combining iO

IDEA:
Theorem 2: Combining iO

IDEA:

- No candidate should get the circuit in the clear.
Theorem 2: Combining iO

IDEA:

- No candidate should get the circuit in the clear.
- Every candidate should get a secret share of circuit C.
Theorem 2: Combining iO

IDEA:

- No candidate should get the circuit in the clear.
- Every candidate should get a secret share of circuit C.
- On every input x, the candidates “jointly compute” C(x).
Theorem 2: Combining iO

IDEA:

- No candidate should get the circuit in the clear.
- Every candidate should get a secret share of circuit C.
- On every input x, the candidates “jointly compute” C(x).

How to do this?
Theorem 2: Combining iO

IDEA:

- No candidate should get the circuit in the clear.
- Every candidate should get a secret share of circuit C.
- On every input x, the candidates “jointly compute” $C(x)$.

How to do this?

Use MPC Techniques!
Approach of AJNSY’16
Approach of AJNSY’16

• Let \(C \) be the circuit to be obfuscated.
Approach of AJNSY’16

• Let C be the circuit to be obfuscated.
• Use a non-interactive MPC.
Approach of AJNSY’16

- Let C be the circuit to be obfuscated.
- Use a non-interactive MPC.
- Secret share circuit C into C₁,...,Cₙ. Treat Cᵢ as input to Pᵢ.
Approach of AJNSY’16

• Let C be the circuit to be obfuscated.
• Use a non-interactive MPC.
• Secret share circuit C into C_1, \ldots, C_N. Treat C_i as input to P_i.
• Obfuscate the circuit containing C_i and the pre-processed state using candidate P_i
Approach of AJNSY’16

• Let C be the circuit to be obfuscated.
• Use a non-interactive MPC.
• Secret share circuit C into C_1,\ldots,C_N. Treat C_i as input to P_i.
• Obfuscate the circuit containing C_i and the pre-processed state using candidate P_i.

MPC satisfying such properties are based on assumptions such as LWE/DDH [MW’16,BGI’17]
Approach of AJNSY’16

Let C be the circuit to be obfuscated.
Use a non-interactive MPC.
Secret share circuit C into C₁,...,Cₙ. Treat Cᵢ as input to Pᵢ.
Obfuscate the circuit containing Cᵢ and the pre-processed state using candidate Pᵢ.

MPC satisfying such properties are based on assumptions such as LWE/DDH [MW’16,BGI’17]

Can we weaken assumptions by relying on interactive MPC?
Our Approach
Our Approach
Our Approach

- Secret share circuit to \((C_1,..,C_N)\) using additive secret sharing.
Our Approach

• Secret share circuit to $(C_1,..,C_N)$ using additive secret sharing.
• Treat each candidate as a party in interactive MP C protocol.
Our Approach

- Secret share circuit to \((C_1, \ldots, C_N)\) using additive secret sharing.
- Treat each candidate as a party in interactive MP Cprotocol.
- Run the MPC protocol for \(U(C_1 + \ldots + C_N, x)\) to learn \(C(x)\)
How to evaluate MPC?
How to evaluate MPC?

• Using candidate P_i obfuscate $\text{NextMsg}(C_i, \ast)$
How to evaluate MPC?

• Using candidate P_i obfuscate $\text{NextMsg}(C_i, *)$
How to evaluate MPC?

- Using candidate P_i obfuscate $\text{NextMsg}(C_i, *)$
How to evaluate MPC?

• Using candidate P_i obfuscate $\text{NextMsg}(C_i,\,*$)
How to evaluate MPC?

- Using candidate P_i obfuscate $\text{NextMsg}(C_i, *)$

We need exponentially many OTs.
(Random) OT

P_1

P_2
(Random) OT

\[P_1 \]

\[(r_0, r_1) \]

\[P_2 \]
(Random) OT

P_1

P_2

(r_0, r_1)

b
(Random) OT

\[P_1 \quad \quad (r_0, r_1) \quad b \quad \quad P_2 \]
(Random) OT

P_1 (r_0, r_1) P_2 (b, r_b)
How to Implement OT?
How to Implement OT?

- Use any OT protocol? Assumptions are stronger.
How to Implement OT?

• Use any OT protocol? Assumptions are stronger.

• Pre-process random OTs. Exponential pre-processing required.
How to Implement OT?

- Use any OT protocol? Assumptions are stronger.

- Pre-process random OTs. Exponential pre-processing required.

- Use PRF keys to generate OTs on the fly.
Using PRF keys
Using PRF keys

\(K_{12} \) \(\text{NextMsg}_2(C_2,*) \)

\(P_{2.Obf} \)
Using PRF keys

\[P_1.\text{Obf} \quad \begin{array}{c}
K_{12} \\
\text{NextMsg}_1(C_1,*) \\
\end{array} \quad P_2.\text{Obf} \quad \begin{array}{c}
K_{12} \\
\text{NextMsg}_2(C_2,*) \\
\end{array} \]
But the PRF key $K_{i,j}$ is obfuscated individually by both candidates P_i and P_j.

\[P_1.\text{Obf} \]
\[K_{12} \]
\[\text{NextMsg}_1(C_1,*) \]

\[P_2.\text{Obf} \]
\[K_{12} \]
\[\text{NextMsg}_2(C_2,*) \]
Using PRF keys

But the PRF key $K_{i,j}$ is obfuscated individually by both candidates P_i and P_j.
Using PRF keys

But the PRF key $K_{i,j}$ is obfuscated individually by both candidates P_i and P_j
Using PRF keys

But the PRF key $K_{i,j}$ is obfuscated individually by both candidates P_i and P_j
Our Fix: Onion Combiner
Our Fix: Onion Combiner

\[P_2.\text{Obf} \left(P_1.\text{Obf} \left(\text{NextMsg}_{1,2}[K_{12}] \right) \right) \]
Further Ideas
Further Ideas

- Several other problems: Handling malicious candidates, resetting attacks, avoiding stronger assumptions, ...
Further Ideas

- Several other problems: Handling malicious candidates, resetting attacks, avoiding stronger assumptions, ...
- FE allows us to avoid input-by-input arguments, allows us to use only polynomial hardness.
Further Ideas

• Several other problems: Handling malicious candidates, resetting attacks, avoiding stronger assumptions, ...

• FE allows us to avoid input-by-input arguments, allows us to use only polynomial hardness.
Open Questions
Open Questions

1. iO Combiner from polynomial hardness
Open Questions

1. iO Combiner from polynomial hardness
2. Combiner for poly–hard Functional Encryption from OWF/DDH